LaTex显示好像有误,待修复
定积分
- $\int_0^{\frac{\pi}{2}} f(\sin x)\mathrm{d}x = \int_0^{\frac{\pi}{2}} f(\cos x) \mathrm{d}x$
- $\int_0^\pi xf(\sin x)\mathrm{d}x = \frac{\pi}{2}\int_0^\pi f(\sin x) \mathrm{d}x$
e.g.
$\int_0^\pi \frac{x\sin x}{1+cos^2x} \mathrm{d}x = \frac{\pi}{2}\int_0^\pi \frac{\sin x}{2-sin^2x} \mathrm{d}x$ - Walls公式:
$I_n=\int_0^\frac{\pi}{2}\sin^nx\mathrm{d}x\=\begin{cases}\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot\ \cdots\ \cdot \frac{3}{4}\cdot\frac{1}{2}\cdot\frac{\pi}{2}\quad (\text{n is even}) \\frac{n-1}{n}\cdot\frac{n-3}{n-2}\cdot\ \cdots\ \cdot \frac{4}{5}\cdot\frac{2}{3}\quad (\text{n is odd, n>1})\end{cases}$